Session Title: Corneal biomechanics
Session Date/Time: Tuesday 08/10/2013 | 08:00-10:30
Paper Time: 10:18
Venue: Elicium 1 (First Floor)
First Author: : R.Vinciguerra ITALY
Co Author(s): : C. Roberts A. Mahmoud C. Azzolini P. Vinciguerra
Purpose:
To evaluate corneal stress distribution based purely on geometry without consideration of loading
via intraocular pressure, pre and post corneal collagen cross-linking (CXL) with a new tomographic parameter,
"Corneal Geometric Stress Factor".
Setting:
Istituto Clinico Humanitas, Rozzano (MI), Italy and Ophthalmology and Biomedical Engineering, The Ohio State University, Columbus, OH, United States.
Methods:
Tomographic data from four hundred and eighty subjects (323 right eyes and 340 left eyes) were
collected retrospectively from Istituto Clinico Humanitas (Rozzano, Italy) with up to 70 months pre-CXL and 60
months post-CXL. Pentacam U12 files (Oculus Optikgerate GmbH, Wetzlar, Germany) were transferred to
The Ohio State University and processed independently using custom software. Corneal Geometric Stress
Factor (CGSF) was calculated at corresponding points from curvature and pachymetric maps to create a
CGSF map. CGSF evaluates the corneas contribution to Hoop stress without considering the applied load
(intraocular pressure) and it can be expressed as the radius of curvature over twice of the thickness
(CGSF=R/2t). Cone Location and Magnitude Index (CLMI) and Flat zone Location and Magnitude Index
(FLMI) were applied to the CGSF map to obtain maximum stress and minimum stress and to calculate the
level of asymmetry in the stress pattern. Pre and post CXL regression analyses were performed.
Results:
Regression analysis showed a significant (p<0.0001) positive correlation of asymmetry stress
distribution before CXL demonstrating increasing asymmetry in the stress pattern, and a significant negative
correlation after CXL (p=0.0001) demonstrating a pattern of reducing asymmetry over time. Maximum and
minimum stress factors similarly had positive correlation before CXL (p<0.0001), indicating increasing stress
over time and negative correlation after CXL (p<0.0001), indicating decreasing stress over time.
Conclusions:
Biomechanical analysis shows CXL is able not only to stop the progression of the disease, but
even to reverse the cycle of biomechanical decompensation of keratoconic corneas. These findings can be
explained by the fact that the decrease of thickness and curvature associated with CXL treatment induces a
consequent reduction in both minimum and maximum stress as well as a reduction of asymmetry in the stress distribution. IOP can modify the stress magnitude, but not change the pattern demonstrated.
Financial Interest:
NONE
Please wait while information is loading.